Accuracy assessment in multivariate Bayesian forecasting linear and nonlinear models

نویسندگان

  • Clark Joachim Kogan
  • Jesse Johnson
  • Jon Graham
چکیده

Reduced alertness and high levels of cognitive fatigue due to sleep loss bring forth substantial risks in today’s 24/7 society. Biomathematical models can be used to help mitigate such risks by predicting quantitative levels of fatigue under sleep loss. These models help manage risk by providing information on the timing at which high levels of fatigue will occur; countermeasures can then be taken to reduce accident risk at such critical times. Many quantitative models exist to predict cognitive performance based on homeostatic and circadian processes (Mallis et al., 2004). These models have typically been fitted to group average data. Due to large individual variation, group-average predictions are often inaccurate for a given individual. However, since individual differences are trait-like, between subjects variation can be captured by individualizing model parameters using the technique of Bayesian forecasting. In many cases the amount of data collected, and consequently, the prediction accuracy, will be limited by factors such as cost and availability. However; prediction accuracy may still be improved by including information from alternative, correlated performance measures in a multivariate Bayesian forecasting framework. When collecting data from two performance measures, we consider methods of sampling that obtain a desired average level of prediction accuracy for minimal data collection cost. We assess the prediction accuracy using the Bayesian mean squared error (MSE) and derive this measure for a general Bayesian linear model. To understand how the accuracy depends on the number of measurements from primary and secondary tasks in the simplest case, we apply the equation to specify the accuracy for the bivariate Bayesian linear model of subject means. For this simple model, we further assume that observations from each performance measure have a fixed cost per data point, and use this assumption to determine the number of measurements of each variable needed to minimize the cost while still obtaining no less than the desired level of accuracy. To aid the extension of the findings from the linear case to state of the art nonlinear biomathematical fatigue models, we focus on obtaining our extended measure of accuracy for the nonlinear case. Computing this accuracy analytically is often infeasible without reliance on model approximations. Model simulations can be used to compute this accuracy; however, such simulations can be time consuming, especially for models that lack analytic solutions and require that a system of differential equations be solved to produce model dynamics. Much of this computational burden in assessing estimator accuracy, however, is produced by using the Bayesian MMSE estimator, and could be reduced by taking advantage of the quicker to compute Bayesian MAP estimator. We show how for a nonlinear biomathematical model that the accuracy assessment using repeated simulation with the

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Nonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)

Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...

متن کامل

Improving the performance of financial forecasting using different combination architectures of ARIMA and ANN models

Despite several individual forecasting models that have been proposed in the literature, accurate forecasting is yet one of the major challenging problems facing decision makers in various fields, especially financial markets. This is the main reason that numerous researchers have been devoted to develop strategies to improve forecasting accuracy. One of the most well established and widely use...

متن کامل

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

پیش‌بینی قیمت‌های نقدی گازطبیعی به کمک مدل‌های غیرخطی ناپارامتریک

Developing models for accurate natural gas spot price forecasting is critical because these forecasts are useful in determining a range of regulatory decisions covering both supply and demand of natural gas or for market participants. A price forecasting modeler needs to use trial and error to build mathematical models (such as ANN) for different input combinations. This is very time consuming ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016